Contribución de los brazos en el aterrizaje del salto vertical. [Contribution of the arms in the landing of the vertical jump].

Marcos Gutiérrez-Dávila, David Pancorbo, Jesús Olivares, Francisco Javier Rojas

Resumen


Se pretende comprobar el efecto que tiene la contribución de los brazos en los aterrizajes de los saltos verticales sobre las componentes de las fuerzas de reacción, goniometría articular y contribución de los segmentos corporales al desplazamiento vertical del centro de gravedad (CG). Han participado 29 deportistas donde el salto vertical constituye una habilidad básica. Todos los participantes debían dejarse caer desde una altura de 0.5 m y amortiguar la caída en dos situaciones experimentales: a) sin acción de brazos y b) con participación libre de los brazos. Se ha utilizado una plataforma de fuerza, operando a 500 Hz, sincronizada temporalmente a una cámara de vídeo a 240 Hz que registraba el plano sagital de los saltos. Los saltos han sido considerados como un movimiento simétrico que se desarrolla en un plano, compuesto por un modelo mecánico simplificado de ocho segmentos. Los resultados han puesto de manifiesto que la participación libre de los brazos contribuye a reducir del segundo pico máximo de fuerza, lo que se produce debido a la mayor distancia de frenado del CG y una menor reducción de la velocidad vertical del CG, lo que podría contribuir a reducir el riesgo de lesiones. La contribución segmentaria al desplazamiento vertical del CG indica que la restricción de los brazos durante los aterrizajes produce un cambio importante en el mecanismo de absorción de las fuerzas que podría incrementar la tensión en el ligamento cruzado anterior de la rodilla.

Abstract

The purpose was to evaluate the effect of the arms action during vertical jump landing on ground reaction forces, joint kinematic and vertical displacement of the center of gravity (CG).  29 athletes where the vertical jump constitutes a basic skill in their sport have participated in this study. All participants had to drop from a height of 0.5 m and cushion the fall in two experimental situations: a) without arm action and b) with free participation of the arms. A force platform, operating at 500 Hz, was synchronized temporarily to a video camera at 210 Hz which recorded the sagittal plane of the jumps. The jumps have been considered as a symmetrical movement that develops in a plane, composed by a simplified mechanical model of eight segments. The results have shown that the free participation of the arms contributes to reduce the second peak of force, which is due to the greater braking distance of the CG and a smaller reduction of the vertical velocity of the CG, which could contribute to reducing the risk of injury. The segmental contribution to the vertical displacement of the CG indicates that the restriction of the arms during landings produces a significant change in the mechanism of absorption of the forces that could increase the tension in the anterior cruciate ligament of the knee.

https://doi.org/10.5232/ricyde2018.05206

Referencias/references

Alm, A.; Ekstrom, H., & Gillquist J. (1974). The anterior cruciate ligament. Acta Orthopaedica Scandinavica, (suppl) 445, 3-49.

Cámara, J.; Calleja-González, J.; Martínez, R., y Fernández-López, J.R. (2013). The effect of basketball footwear on the vertical ground reaction force during the landing phase of drop jumps. Revista de Psicología Deportiva, 22(1), 179-182.

Chappell, J.D.; Yu, B.; Kirkendall, D.T., & Garret, W.E. (2002). A comparison of knee kinetics between male and female recreational athletes in stop-jump tasks. The American Journal of Medicine, 30(2), 261-267.
https://doi.org/10.1177/03635465020300021901

Cortes, N.; Onate, J.; Abrantes, J.; Gagen, L.; Dowling, E., & Van Lunen, B. (2007). Effects of gender and foot-landing techniques on lower extremity kinematics during drop-jump landings, Journal of Applied Biomechains, 23, 289-299.
https://doi.org/10.1123/jab.23.4.289

Dapena, J., & Chung, C.S. (1988). Vertical and radial motions of the body during the take-off phase of high jumping. Medicine and Science in Sports and Exercise, 20, 290–302.
https://doi.org/10.1249/00005768-198806000-00014

Decker, M.J.; Torry, M.R.; Wyland, D.J.; Sterett, W.I., & Steadman, J.R. (2003). Gender differences in lower extremity kinematics, kinetics and energy absorption during landing. Clinical Biomechanics, 18, 662-669.
https://doi.org/10.1016/S0268-0033(03)00090-1

de Leva, P. (1996). Adjustments to Zatsiorsky–Seluyanovs segment inertia parameters. Journal of Biomechanics, 29, 1223–1230.
https://doi.org/10.1016/0021-9290(95)00178-6

Ericksen, H.M.; Gribble, P.A.; Pfile, K.R., & Pietrosimone, B.G. (2013). Different modes of feedback and peak veltical ground reaction force during jump landing. A systematic review. Journal of Athletic Training, 48(5), 685-692.
https://doi.org/10.4085/1062-6050-48.3.02

Gutiérrez-Dávila, M.; Garrido, J.M.; Amaro, F.; Ramos, M., y Rojas, F.J. (2012). Método para determinar la contribución segmentaria en los saltos. Su aplicación en el salto vertical con contramovimiento. Motricidad. European Journal of Human Movement, 29, 1-21

Gutiérrez-Dávila, M.; Garrido, J.M.; Amaro, F.J., & Rojas, F.J. (2014): An analysis of two styles of arm action in the vertical countermovement jump, Sports Biomechanics, 12, 2, 135-143.
https://doi.org/10.1080/14763141.2014.910832

Lees, A. (1981). Methods of impact absorption when landing from a jump. Engineering in Medicine. 10, 207-211. https://doi.org/10.1243/EMED_JOUR_1981_010_055_02

Lobietti, R.; Coleman, S.; Pizzichillo, E., & Merni, F. (2010). Landing techniques in volleyball. Journal of Sports Sciences, 28(13), 1469-1476.
https://doi.org/10.1080/02640414.2010.514278

McNair, P. J.; Prapavessis, H., & Callender, K. (2000). Decreasing landing forces: effect of instruction. British Journal of Sports Medicine, 34(4), 293-295.
https://doi.org/10.1136/bjsm.34.4.293

McNair P.J., & Marshall R.N. (1994). Landing characteristics in subjects with normal and anterior cruciate ligament deficient knee joints. Archives of Physical Medicine and Rehabilitation. 75(5), 584–589.

McNintt-Gray, J. (2000). Subject specific coordination of two and one joint muscles during landings suggests multiple control criteria. Motor Control, 4, 1-44.

Newman, J. S., & Newberg, A. H. (2010). Basketball injuries. Radiologic Clinics of North America, 48(6), 1095-1111.
https://doi.org/10.1016/j.rcl.2010.07.007

Niu, W.; Zhang, M., Fan, Y. & Zhao, Q. (2013). Dynamic postural stability for double-leg drop landing, Journal of Sports Sciences, 31(10), 1074-1081.
https://doi.org/10.1080/02640414.2012.762600

Niu, W.; Feng, T.; Jiang, C., & Zhang, M. (2014). Peak Vertical Ground Reaction Force during Two-Leg Landing: A Systematic Review and Mathematical Modeling. BioMed Research International,  2014, 1-10.
https://doi.org/10.1155/2014/126860

Olivares, J.;  Pancorbo, D.; Gutiérrez-Dávila, M., y Rojas, F.J. (2016). Efecto de la acción posterior a la recepción sobre la amortiguación en la recepción de los saltos verticales. En García‐López, J. y Ogueta‐Alday, A. (Eds). Actas del XXXIX Congreso de la Sociedad Ibérica de Biomecánica y Biomateriales (pp. 53-54). León. Editorial  Universidad de León.

Rojano, D.; Rodríguez, E., & Berral, F.J. (2010). Analysis of the vertical ground reaction forces and temporal factors in the   landing phase of a countermovement jump. Journal of Sports Sciences and Medicine, 9, 282-287.

Rowley, K.M., & Richards, J.G. (2015). Increasing plantarflexion angle during landing reduces vertical ground reaction forces, loading rates and the hip’s contribution to support moment within participants. Journal of Sports Sciences, 33(18), 1922-1931.
https://doi.org/10.1080/02640414.2015.1018928

Sampello, M. (2005). Review of motor control mechanisms underlying impact absorption from falls. Gait and Posture, 21, 85-97.
https://doi.org/10.1016/j.gaitpost.2004.01.005

Sampello, M.; McDonagh, M.J.N., & Challis, J.H. (2001). Visual and no visual control of landing movements in humans. Journal of Physiology, 537, 313-340.
https://doi.org/10.1111/j.1469-7793.2001.0313k.x

Saunders, N.W.; Hanson, N.; Koutakis, P.; Chaudhari, A.M., & Devor, S.T. (2014). Landing ground reaction forces in figure skaters and non-skaters. Journal of Sports Sciences, 32(11), 1042-1049.
https://doi.org/10.1080/02640414.2013.877593

Wilk, K. E.; Briem, K.; Reinold, M.M.; Devine, K.M.; Dugas, J., & Andrews, J. R. (2006). Rehabilitation of articular lesions in the athlete’s knee. Journal of Orthopaedic and Sports Physical Therapy, 36(10), 815-827.
https://doi.org/10.2519/jospt.2006.2303

Winter, D. (1990). Biomechanics and motor control of human movement. New York, NY. John Wiley.

Zatsiorsky, V. M., & Seluyanov, N. V. (1983). The mass and inertial characteristics of the main segments of the human body. In H. Matsui & K. Kobayashi (Eds.), Biomechanics VIII-B (pp. 1152–1159). Champaign, IL. Human Kinetics.

 


Palabras clave/key words


biomecánica; recepción salto vertical; amortiguación; lesiones deportivas; biomechanics; vertical jump reception; cushioning; sports injuries

Texto completo/Full Text:

PDF




------------------------ 0 -------------------------

RICYDE. Revista Internacional de Ciencias del Deporte
logopublisher_168


Publisher: Ramón Cantó Alcaraz
ISSN:1885-3137 - Periodicidad Trimestral / Quarterly
Creative Commons License