Determinación de propiedades aerodinámicas de la jabalina mediante dinámica de fluidos computacional. [Determination of aerodynamic properties of javelin by means of computational fluid dynamics].

Alfredo González-Martínez, Arturo Martinez-Rodriguez, Alexander Laffita-Leyva

Resumen


Durante el vuelo de la jabalina su interacción con el aire circundante presenta una importancia relevante, lo cual es caracterizado por los coeficientes de sustentación y arrastre y por la posición del centro de presiones. Habitualmente estos parámetros son determinados en túneles de viento con la envergadura requerida para albergar un implemento de estas dimensiones, siendo complicado evitar interferencias de los medios de sostén, así como lograr la medición experimental de los campos de presiones y velocidades en las proximidades de la jabalina. Para solventar estas dificultades, en el trabajo se aborda la simulación computarizada de la interacción jabalina-aire empleando herramientas de Dinámica de Fluidos Computacional (CFD). Modelos digitalizados tridimensionales de jabalinas con peso y dimensiones oficiales, fueron sometidos a corriente de aire, siguiendo un diseño experimental con cinco niveles de velocidad relativa entre el aire y la jabalina y ocho niveles de ángulo de ataque. Como resultado se obtuvieron las curvas de ajuste de los coeficientes de arrastre y sustentación vs. el ángulo de ataque para ambos tipos de jabalina. Asimismo fue determinada la posición del centro de presiones y la magnitud y dirección del momento de rotación en función de la velocidad relativa entre el aire y la jabalina para diferentes ángulos de ataque. Los resultados otenidos son de relevante importancia durante la elaboración de modelos matemáticos de simulación del vuelo de la jabalina, que pueden ser empleados por entrenadores y atletas con vista al perfeccionamiento de los parámetros iniciales del lanzamiento y la obtención de mejores marcas.

Abstract

During the flight of the javelin its interaction with the surrounding air presents a relevant importance, which is characterized by the coefficients of lift and drag and by the position of the center of pressures. Usually these parameters are determined in wind tunnels with the required span to accommodate an implement of these dimensions, being difficult to avoid interferences of the support means, as well as achieving the experimental measurement of the fields of pressures and velocities in the vicinity of the javelin. To solve these difficulties, in the present work the computerized simulation of the javelin-air interaction using Computational Fluid Dynamics (CFD) tools is carried out. Three-dimensional models of javelins with official weight and dimensions, were subjected to an air stream, with five levels of relative speed between the air and the javelin and eight levels of attack angle. As a result, the adjustment curves of the drag and lift coefficients vs. the angle of attack for both types of javelin were obtained. Likewise, the position of the center of pressures and the magnitude and direction of the pitching moment as a function of the relative velocity between the air and the javelin (masculine modality) for different angles of attack were determined. The results obtained are of relevant importance for the development of mathematical models of simulation of the javelin flight, which can be used by coaches and athletes with a view to improving the release parameters in order to obtain better performance.

https://doi.org/10.5232/ricyde2019.05602

Referencias/references

Bartlett, R. M. & Best, R.J (1988). “The biomechanics of javelin throwing”: a review. Journal of Sports Sciences, 6(1), 1-38.
https://doi.org/10.1080/02640418808729791

Bartlett, R.; Müller, E.; Lindinger, S.; Brunner, F., & Morriss, C. (1996). “Three-dimensional evaluation of the kinematic release parameters for javelin throwers of different skill levels”. Journal of Applied Biomechanics, (Champaign,-Ill.), 12(1), 58-71.
https://doi.org/10.1123/jab.12.1.58

Best, R. J.; Bartlett, R. M., & Sawyer, R. A. (1995). Optimal javelin release. Journal of Applied Biomechanics, 11(4), 371-394.
https://doi.org/10.1123/jab.11.4.371

Bitog, J. P.; Lee, I. B.; WANG, H. S.; Shin, M. H.; Hong, S. W.; Seo, I. H.; Mostafa, E., & Pang, Z. (2011). ¨A wind tunnel study on aerodynamic porosity and wind break drag¨. Forest Science and Technology, 7(1), 8-16.
https://doi.org/10.1080/21580103.2011.559939

Chiu, C. H. (2009). Discovering Optimal Release Conditions for the Javelin World Record Holders by Using Computer Simulation. International Journal of Sport and Exercise Science, 1(2), 41-50.

Golf, J. E. (2013). A review of recent research into aerodynamics of sport projectiles. Sports Engeniering, (16), 137–154.   

Grycmann,P.; Maszczyk; A.; Socha, T.;Gołaś; A.; Wilk; M.; Zając, T.,& Przednowek, K. (2015).  Modelling analysis and prediction of women javelin throw results in the years 1946 – 2013. Biology of Sport. 32(4), 345–350.
https://doi.org/10.5604/20831862.1189201

Hatton, L. (2007). Optimising the javelin throw in the presence of prevailing winds. Faculty of Computing, Information Systems and Mathematics, University of Kingston. January 28.
https://www.leshatton.org/Documents/jav2007a_paper.pdf Consultado el 11/10/2016.

Hubbard, M., & Alaways, L. W. (1989). Rapid and accurate estimation of release conditions in the javelin throw. Journal of Biomechanics, 22(6-7), 583-595.
https://doi.org/10.1016/0021-9290(89)90010-9

Jiang, M., & Zhou, Jihe. (2014). Optimization Calculation of Javelin Throwing Results. Applied Mechanics & Materials, (716-717), 764-766.
https://doi.org/10.4028/www.scientific.net/AMM.716-717.764

Maheras, A. V. Basic Javelin Aerodynamics and flight characteristics. (2013). Techniques for Track & Field and Cross Country, 1(7), 31-41.

Mahmud, E. (2007) The Mechanical Factors Effect of Javelin Release on the Javelin Flying Path and the Distance Approached. Education of psychological sciences, 1(8), 203-220.

Maryniak, J.; Edyta Ładyżyńska-Kozdraś, & Edyta Golińska. (2009). Mathematical Modeling and Numerical Simulations of Javelin Throw. Human Movement, 10(1), 16–20.
https://doi.org/10.2478/v10038-009-0003-5

Mc Lester, J., & St. Pierre, P. (2008). Applied Biomechanics. Concepts and Connections. Thomson Wadsworth. ISBN 10-0-495-10586-4.

Menzel, H. J. (1986). Biomechanics of javelin throwing. New Studies in Athletics, 1(3), 85–98.

Mero, A.; Komi, P. V.; Korjus, T.; Navarro, E., & Gregor, R. (1994) “Body segment contributions to javelin throwing during final thrust phases”. Journal of Applied- Biomechanics, 10(2), 166-177.
https://doi.org/10.1123/jab.10.2.166

Whiting, W.; Gregor, R., & Halushka, M. (1991). “Body segment and release parameter contributions to new-rules javelin throwing”. International Journal of Sport Biomechanics, 2(7), 111-124.
https://doi.org/10.1123/ijsb.7.2.111



Palabras clave/key words


jabalina; modelación; arrastre; sustentación; javelin; modeling; drag; lift.

Texto completo/Full Text:

PDF




------------------------ 0 -------------------------

RICYDE. Revista Internacional de Ciencias del Deporte
logopublisher_168
Publisher: Ramón Cantó Alcaraz
ISSN:1885-3137 - Periodicidad Trimestral / Quarterly
Creative Commons License