Multi-location external workload profile in U-18 soccer players. [Perfil multi-ubicación de carga externa en jugadores de fútbol sub-18].

Carlos David Gómez-Carmona, Alejandro Bastida-Castillo, Victor Moreno-Pérez, Sergio José Ibáñez, José Pino-Ortega



An association between accelerometer workload and injury risk has been found previously. However, any research has assessed the absorption dynamics of external workload through the measurement in different anatomical locations simultaneously. A cross-sectional study was designed to: (i) to describe the multi-joint external workload profile of youth soccer players, (ii) to identify differences between-participants related to anatomical locations, (iii) to analyze the workload dynamics at different speeds at joints and body segments, (iv) to characterize the multi-joint individual workload and the within-participants difference in each body segment. Twenty-one U-18 male players, that were part of a Youth Spanish First Division soccer team, performed an incremental running treadmill test and wore four WIMU PROTM inertial devices in lower limb (ankle-knee) and spine (lower-upper back) locations to register cumulative tri-axial accelerometry-based workload (PlayerLoad, PLRT). The main results have shown that the highest PLRT was detected at the lower limb, especially at the ankle. Different dynamics of accelerometer workload have been found between lower and upper limb, being them between ankle-knee at 12-km/h and lower-upper back at 9.5-km/h (p<.05). Between-participants’ differences were shown at all joints, finding the highest differences at the upper back (p<.01; d=2.17). Finally, the body segment knee-lower back reported the highest differences (%diff=34.25-to-67.28; d=2.20-to-4.77). In conclusion, a great between-participants external workload variability was found at joints and body segments, being recommended for an individualized assessment and specific training protocols.


Una asociación entre la carga acelerometría y el riesgo de lesión ha sido encontrada previamente. Sin embargo, no existen investigaciones que evalúen la dinámica de absorción de carga externa a través de diferentes ubicaciones anatómicas simultáneamente. Un estudio transversal fue diseñado para: (i) describir el perfil multi-ubicación de carga externa en jugadores jóvenes de fútbol, (ii) identificar diferencias entre sujetos relacionadas con las ubicaciones anatómicas, (iii) analizar la dinámica de carga a diferentes velocidades en diferentes ubicaciones anatómicas y segmentos corporales, (iv) caracterizar el perfil multi-ubicación individual y las diferencias intra-sujeto en cada segmento corporal. 21 jugadores masculinos U-18 que pertenecían a un equipo de fútbol de Primera División Nacional Juvenil realizaron un test incremental en tapiz rodante portando cuatro dispositivos inerciales WIMU PROTM en diferentes ubicaciones del tren inferior (rodilla-tobillo) y columna (espalda alta y baja) para registrar la carga acelerométrica tri-axial acumulada (PlayerLoad, PLRT). Los principales resultados muestran que el mayor PLRT fue detectando en el tren inferior, especialmente en el tobillo. Diferentes dinámicas de carga acelerométrica han sido encontrados entre el tren inferior y el tren superior, siendo estas diferencias entre tobillo-rodilla a 12 km/h y entre espalda alta-baja a 9.5 km/h (p<.05). Diferencias inter-sujeto fueron encontradas en todas las ubicaciones, encontrando las mayores diferencias en la espalda alta (p<.01; d=2.17). Finalmente, el segmento corporal rodilla-espalda baja reportó las mayores diferencias (%diff=34.25-to-67.28; d=2.20-to-4.77). En conclusión, una alta variabilidad inter-sujeto en la carga externa registrada fue encontrada en todas las ubicaciones y segmentos corporales, siendo recomendable su individualización y entrenamiento específico.


Abade, E. A.; Gonçalves, B. V.; Leite, N. M., & Sampaio, J. E. (2014). Time-motion and physiological profile of football training sessions performed by under-15, under-17, and under-19 elite portuguese players. International Journal of Sports Physiology and Performance, 9(3), 463–470.

Baharudin, A.; Ahmad, M. H.; Naidu, B. M.; Hamzah, N. R.; Zaki, N. A. M.; Zainuddin, A. A., & Nor, N. S. M. (2017). Reliability, technical error of measurement and validity of height measurement using portable stadiometer. Pertanika Journal of Science & Technology, 25(3), 675-686.

Barrett, S.; Midgley, A.; Reeves, M.; Joel, T.; Franklin, E.; Heyworth, R.; Garret, A., & Lovell, R. (2016). The within-match patterns of locomotor efficiency during professional soccer match play: implications for injury risk? Journal of Science and Medicine in Sport, 19(10), 810–815.

Barrett, S.; Midgley, A., & Lovell, R. (2014). PlayerLoadTM: reliability, convergent validity, and influence of unit position during treadmill running. International Journal of Sports Physiology and Performance, 9(6), 945–952.

Bastida-Castillo, A.; Gómez-Carmona, C. D.; De la Cruz Sánchez, E., & Pino-Ortega, J. (2018). Accuracy, intra- and inter-unit reliability, and comparison between GPS and UWB-based position-tracking systems used for time–motion analyses in soccer. European Journal of Sport Science, 18(4), 450–457.

Bourdon, P. C.; Cardinale, M.; Murray, A.; Gastin, P.; Kellmann, M.; Varley, M. C.; Gabbett, T. J.; Coutts, A. J.; Burgess, D. J.; Gregson, W., & Cable, N. T. (2017). Monitoring athlete training loads: consensus statement. International Journal of Sports Physiology and Performance, 12(Suppl 2), S2-161-S2-170.

Bowen, L.; Gross, A. S.; Gimpel, M., & Li, F.-X. (2017). Accumulated workloads and the acute:chronic workload ratio relate to injury risk in elite youth football players. British Journal of Sports Medicine, 51(5), 452–459.

Buchheit, M.; Lacome, M.; Cholley, Y., & Simpson, B. M. (2018). Neuromuscular responses to conditioned soccer sessions assessed via GPS-embedded accelerometers: insights into tactical periodization. International Journal of Sports Physiology and Performance, 13(5), 577–583.

Cochrum, R. G.; Connors, R. T.; Coons, J. M.; Fuller, D. K.; Morgan, D. W., & Caputo, J. L. (2017). Comparison of running economy values while wearing no shoes, minimal shoes, and normal running shoes. Journal of Strength and Conditioning Research, 31(3), 595–601.

Colby, M. J.; Dawson, B.; Heasman, J.; Rogalski, B., & Gabbett, T. J. (2014). Accelerometer and GPS-derived running loads and injury risk in elite australian footballers. Journal of Strength and Conditioning Research, 28(8), 2244–2252.

Derrick, T. R.; Dereu, D., & Mclean, S. P. (2002). Impacts and kinematic adjustments during an exhaustive run. Medicine & Science in Sports & Exercise, 34(6), 998–1002.

DiCesare, C. A.; Montalvo, A.; Foss, K. D. B.; Thomas, S. M.; Hewett, T. E.; Jayanthi, N. A., & Myer, G. D. (2019). Sport specialization and coordination differences in multisport adolescent female basketball, soccer, and volleyball athletes. Journal of Athletic Training, 54(10), 1105–1114.

Dixon, S. J.; Collop, A. C., & Batt, M. E. (2000). Surface effects on ground reaction forces and lower extremity kinematics in running. Medicine & Science in Sports & Exercise, 32(11), 1919–1926.

Ekstrand, J.; Hagglund, M., & Walden, M. (2011). Epidemiology of muscle injuries in professional football (soccer). The American Journal of Sports Medicine, 39(6), 1226–1232.

Field, A. (2013). Discovering Statistics Using IBM SPSS Statistics (4th ed.). London, UK: SAGE.

Gastin, P. B.; Hunkin, S. L.; Fahrner, B., & Robertson, S. (2019). Deceleration, acceleration, and impacts are strong contributors to muscle damage in professional australian football. Journal of Strength and Conditioning Research, 33(12), 3374-3383.

Gómez-Carmona, C.D.; Gamonales, J.; Pino-Ortega, J., & Ibáñez, S.J. (2018). Comparative analysis of load profile between small-sided games and official matches in youth soccer players. Sports, 6(4), 173.

Gómez-Carmona, C.D.; Rojas-Valverde, D.; Rico-González, M.; Ibáñez, S. J., & Pino-Ortega, J. (2020). What is the most suitable sampling frequency to register accelerometry-based workload? A case study in soccer. Proceedings of the Institution of Mechanical Engineers Part P Journal of Sports Engineering and Technology, Epub: Ahead of Print.

Gómez-Carmona, C.D.; Bastida-Castillo, A.; García-Rubio, J.; Ibáñez, S. J., & Pino-Ortega, J. (2019). Static and dynamic reliability of WIMU PROTM accelerometers according to anatomical placement. Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology, 233(2), 238–248.

Gómez-Carmona, C.D.; Bastida-Castillo, A.; González-Custodio, A.; Olcina, G., & Pino-Ortega, J. (2019). Using an inertial device (WIMU PROTM) to quantify neuromuscular load in running. reliability, convergent validity and influence of type of surface and device location. Journal of Strength and Conditioning Research, 34(2), 365-373.

Gómez-Carmona, C.D.; Bastida-Castillo, A.; Ibáñez, S. J., & Pino-Ortega, J. (2020). Accelerometry as a method for external workload monitoring in invasion team sports. A systematic review. PLoS ONE, 15(8), e0236643.

Gómez-Carmona, C.D.; Pino-Ortega, J., & Ibáñez, S. J. (2020). Design and validity of a field test battery for assessing multi-location external load profile in invasion team sports. Journal of Sport Science, 16(1), 23–48.

Halson, S. L. (2014). Monitoring training load to understand fatigue in athletes. Sports Medicine, 44(S2), 139–147.

Hardin, E. C.; Van Den Bogert, A. J., & Hamill, J. (2004). Kinematic adaptations during running: effects of footwear, surface, and duration. Medicine & Science in Sports & Exercise, 36(5), 838–844.

Heiderscheit, B. C.; Chumanov, E. S.; Michalski, M. P.; Wille, C. M., & Ryan, M. B. (2011). Effects of step rate manipulation on joint mechanics during running. Medicine & Science in Sports & Exercise, 43(2), 296–302.

Hellmann, F.; Verdi, M.; Schlemper Junior, B. R., & Caponi, S. (2014). 50th anniversary of the declaration of helsinki: the double standard was introduced. Archives of Medical Research, 45(7), 600–601.

Hopkins, W. G.; Marshall, S. W.; Batterham, A. M., & Hanin, J. (2009). progressive statistics for studies in sports medicine and exercise science. Medicine & Science in Sports & Exercise, 41(1), 3–13.

Hulin, B. T.; Gabbett, T. J.; Johnston, R. D., & Jenkins, D. G. (2017). Wearable microtechnology can accurately identify collision events during professional rugby league match-play. Journal of Science and Medicine in Sport, 20(7), 638–642.

Jarning, J. M.; Mok, K.-M.; Hansen, B. H., & Bahr, R. (2015). Application of a tri-axial accelerometer to estimate jump frequency in volleyball. Sports Biomechanics, 14(1), 95–105.

Kelly, J. S., & Metcalfe, J. (2012). Validity and Reliability of Body Composition Analysis Using the Tanita BC418-MA. Journal of Exercise Physiology, 15(6), 74–83.

Kiernan, D.; Hawkins, D. A.; Manoukian, M. A. C.; McKallip, M.; Oelsner, L.; Caskey, C. F., & Coolbaugh, C. L. (2018). Accelerometer-based prediction of running injury in National Collegiate Athletic Association track athletes. Journal of Biomechanics, 73, 201–209.

Klassen, T. D.; Simpson, L. A.; Lim, S. B.; Louie, D. R.; Parappilly, B.; Sakakibara, B. M.; Zbogar, D., & Eng, J. J. (2016). “Stepping up” activity poststroke: ankle-positioned accelerometer can accurately record steps during slow walking. Physical Therapy, 96(3), 355–360.

Leser, R.; Schleindlhuber, A.; Lyons, K., & Baca, A. (2014). Accuracy of an UWB-based position tracking system used for time-motion analyses in game sports. European Journal of Sport Science, 14(7), 635–642.

Liu, W., & Nigg, B. M. (2000). A mechanical model to determine the influence of masses and mass distribution on the impact force during running. Journal of Biomechanics, 33(2), 219-224.

Lopes, A. D.; Junior, L. C. H.; Yeung, S. S., & Costa, L. O. P. (2012). What are the main running-related musculoskeletal injuries? Sports Medicine, 42(10), 891-905.

McGregor, S. J.; Armstrong, W. J.; Yaggie, J. A.; Parshad, R. D., & Bollt, E. M. (2011). Fatiguing exercise increases complexity of postural control: control entropy of high-resolution accelerometry. Medicine & Science in Sports & Exercise, 43(Suppl 1), 526.

McLaren, S. J.; Macpherson, T. W.; Coutts, A. J.; Hurst, C.; Spears, I. R., & Weston, M. (2018). The relationships between internal and external measures of training load and intensity in team sports: a meta-analysis. Sports Medicine, 48(3), 641–658.

Morris, R. G., & Lawson, S. E. M. (2009). A review and evaluation of available gait analysis technologies, and their potential for the measurement of impact transmission. Newcastle University, UK, 15.

Nedergaard, N. J.; Robinson, M. A.; Eusterwiemann, E.; Drust, B.; Lisboa, P. J., & Vanrenterghem, J. (2017). The relationship between whole-body external loading and body-worn accelerometry during team-sport movements. International Journal of Sports Physiology and Performance, 12(1), 18–26.

Nigg, B. M. (2001). The role of impact forces and foot pronation: A new paradigm. Clinical Journal of Sport Medicine: Official Journal of the Canadian Academy of Sport Medicine, 11(1), 2–9.

Oliva-Lozano, J. M.; Rojas-Valverde, D.; Gómez-Carmona, C. D.; Fortes, V., & Pino-Ortega, J. (2020). Impact of contextual variables on the representative external load profile of spanish professional soccer match-play: a full season study. European Journal of Sport Science, Epub: Ahead of Print, 1–22.

Pfirrmann, D.; Herbst, M.; Ingelfinger, P.; Simon, P., & Tug, S. (2016). Analysis of injury incidences in male professional adult and elite youth soccer players: a systematic review. Journal of Athletic Training, 51(5), 410–424.

Pino-Ortega, J.; Rojas-Valverde, D.; Gómez-Carmona, C. D.; Bastida-Castillo, A.; Hernández-Belmonte, A.; García-Rubio, J.; Nakamura, F. Y., & Ibáñez, S. J. (2019). Impact of contextual factors on external load during a congested-fixture tournament in elite u’18 basketball players. Frontiers in Psychology, 10, 1100.

Rojas-Valverde, D.; Sánchez-Ureña, B.; Pino-Ortega, J.; Gómez-Carmona, C.D.; Gutiérrez-Vargas, R.; Timón, R., & Olcina, G. (2019). External workload indicators of muscle and kidney mechanical injury in endurance trail running. International Journal of Environmental Research and Public Health, 16(20), 1–13.

Rugg, C.; Kadoor, A.; Feeley, B. T., & Pandya, N. K. (2018). The effects of playing multiple high school sports on national basketball association players’ propensity for injury and athletic performance. The American Journal of Sports Medicine, 46(2), 402–408.

Sigward, S. M.; Pollard, C. D.; Havens, K. L., & Powers, C. M. (2012). Influence of sex and maturation on knee mechanics during side-step cutting. Medicine & Science in Sports & Exercise, 44(8), 1497–1503.

Simons, C., & Bradshaw, E. J. (2016). Reliability of accelerometry to assess impact loads of jumping and landing tasks. Sports Biomechanics, 15(1), 1–10.

Spriet, L. L. (2014). Exercise and Sport Performance with Low Doses of Caffeine. Sports Medicine, 44(S2), 175–184.

Suarez-Arrones, L. J.; Nuñez, F. J.; Portillo, J., & Mendez-Villanueva, A. (2012). Running demands and heart rate responses in men rugby sevens. Journal of Strength and Conditioning Research, 26(11), 3155–3159.

Takeda, R.; Tadano, S.; Todoh, M.; Morikawa, M.; Nakayasu, M., & Yoshinari, S. (2009). Gait analysis using gravitational acceleration measured by wearable sensors. Journal of Biomechanics, 42(3), 223–233.

Vanrenterghem, J.; Nedergaard, N. J.; Robinson, M. A., & Drust, B. (2017). Training load monitoring in team sports: a novel framework separating physiological and biomechanical load-adaptation pathways. Sports Medicine, 47(11), 2135–2142.

Vincent, W. J., & Weir, J. P. (2012). Statistics in Kinesiology (4th ed.). Champaign, USA: Human Kinetics.

Wellman, A. D.; Coad, S. C.; Goulet, G. C.; Coffey, V. G., & McLellan, C. P. (2016). Quantification of accelerometer derived impacts associated with competitive games in NCAA division I college football players. Journal of Strength and Conditioning Research, 1.

Wu, F.; Zhang, K.; Zhu, M.; Mackintosh, C.; Rice, T.; Gore, C.; Hahn, A., & Holthous, S. (2007). An investigation of an integrated low-cost GPS, INS and magnetometer system for sport applications. In Proceedings of the 20th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2007), pp. 113-120.

Zhang, J. H.; An, W. W.; Au, I. P. H.; Chen, T. L., & Cheung, R. T. H. (2016). Comparison of the correlations between impact loading rates and peak accelerations measured at two different body sites: Intra- and inter-subject analysis. Gait & Posture, 46, 53–56.

Palabras clave/key words

testing; accelerometry; musculoskeletal workload; team sports; evaluación; acelerometría; carga musculoesquelética; deportes de equipo.

Texto completo/Full Text:

PDF (English) PDF

------------------------ 0 -------------------------

RICYDE. Revista Internacional de Ciencias del Deporte

Publisher: Ramón Cantó Alcaraz
ISSN:1885-3137 - Periodicidad Trimestral / Quarterly
Creative Commons License