Influencia epigenómica de la actividad / inactividad física en el origen de la Diabetes mellitus tipo 2. (Epigenomic influence of the physical activity/inactivity in the origin of type 2 diabetes).

José Luis Márquez Andrade, Luis Antonio Salazar Navarrete


Contrariamente al modelo centrado en las mutaciones, el cual asume que alteraciones en la función son consecuencia de mutaciones somáticas o heredadas en la secuencia del DNA, el modelo epigenético implica una carencia de regulación de uno o más genes. Un componente crítico del epigenoma son los patrones de distribución de las citosinas metiladas en secuencias de dinucleótidos CpG. Tal metilación marca los genes para su inactivación al interferir con la unión de factores de transcripción sensibles a DNA metilado o bien al reclutar proteínas que agrupan complejos correpresores y deacetilasas de histonas en torno a la cromatina. Estas marcas epigenéticas son propagadas luego mitótica y en algunos casos meióticamente, resultando en una herencia estable de estados regulatorios. Hoy se sabe que la dieta u otros factores ambientales son un punto de control para la regulación de la expresión génica y que durante periodos críticos de desarrollo, la cromatina sería particularmente sensible a modificaciones epigenómicas. De esta manera una explicación epigenómica del origen fetal de las enfermedades crónicas del adulto parece razonable. La presente revisión explica cómo la actividad/inactividad física de la madre o de la progenie en etapas tempranas, puede predisponer a Diabetes mellitus tipo 2 en la vida adulta a través de este mecanismo.

Palabras clave: diabetes; epigenética; inactividad física.


Contrary to the model centered in the mutations, which assumes that alterations in the function are consequence of somatic or inherited mutations in the sequence of the DNA, the epigenetic model implies dysregulation of one or more genes. A critical component of epigenome is its distribution patterns of the methylated cytosines in CpG sequences. This methylation marks to genes for their inactivation interfering with the union of methylated DNA-sensible transcription factors or recruiting proteins that group corepressor complexes and histone deacetylases around of chromatin. These epigenetic marks are propagated soon mitotic and in some cases meioticaly, result in a stable inheritance of regulatory states. Today it is known that diet or other environmental factors are a control point for the regulation of the gene expression and that during critical periods of development, the chromatin would be particularly sensible to epigenomics modifications. This way, an epigenomic explanation of the fetal origin of adult´s chronic diseases seems reasonable. The present review explains how physical activity/inactivity of the mother or the lineage in early stages can ready to Diabetes mellitus type 2 in the adult life through this mechanism.

Key words: diabetes; epigenetic; physical inactivity.


Texto completo en PDF



Adair, L.S. & Prentice, A.M. (2004). A critical evaluation of the fetal origins hypothesis and its implications for developing countries. J Nutr, 134(1), 191-193.

Adamo, K.B.; Sigal, R.J.; Williams, K.; Kenny, G.; Prud'homme, D. & Tesson, F. (2005). Influence of Pro12Ala peroxisome proliferator-activated receptor gamma2 polymorphism on glucose response to exercise training in type 2 diabetes. Diabetologia, 48(8), 1503-1509.

American Diabetes Association. (2004). Diagnosis and Classification Of Diabetes Mellitus. Diabetes Care, 27, S5-S10.

Baier, L.J.; Wiedrich, C.; Hanson, R.L.; Bogardus, C. (1998). Variant in the regulatory subunit of phosphatidylinositol 3-kinase (p85α): preliminary evidence indicates a potential role of this variant in the acute insulin response and type 2 diabetes in Pima women. Diabetes, 47: 973–975.

Barker, D.J. (2004). The developmental origins of adult disease. J Am Coll Nutr, 23(6 Suppl), 588S-595S.

Barroso I. (2005). Genetics of Type 2 diabetes. Diabet Med, 22(5):517-35.

Bindon, J.; Baker, P. (1997). Bergmann’s Rule and the Thrifty Genotype. Am J Phys Anthropol, 104, 201-210.

Booth, F.; Chakravarthy, M.; Gordon, S. & Spangenburg, E. (2002). Waging War On physical inactivity: using modern molecular ammunition against an ancient enemy. J Appl Physiol, 93, 3–30.

Booth, F.; Gordon, S.; Carlson, C. & Hamilton, M. (2000). Waging war on modern chronic diseases: primary prevention through exercise biology. J. Appl. Physiol, 88, 774–787.

Booth, F.W. & Lees, S.J. (2007). Fundamental questions about genes, inactivity, and chronic diseases. Physiol Genomics, 28(2), 146-157.

Carulli, L.; Rondinella, S.; Lombardini, S.; Canedi, I; Loria, P. & Carulli, N. (2005). Diabetes, genetics and ethnicity. Aliment Pharmacol Ther, 22 (Suppl. 2), 16–19.

Chakravarthy, M. & Booth, F. (2004). Eating, exercise, and “thrifty” genotypes: connecting the dots toward an evolutionary understanding of modern chronic diseases. J Appl Physiol, 96, 3–10.

Cooney, C.A.; Dave, A.A. & Wolff, G.L. (2002). Maternal methyl supplements in mice affect epigenetic variation and DNA methylation of offspring. J Nutr, 132(8 Suppl), 2393S-2400S.

Cordain, L.; Gotshall, R.W.; Eaton, S.B. & Eaton, S.B. III. (1998). Physical activity, energy expenditure and fitness: an evolutionary perspective. Int J Sports Med, 19, 328–335.

Cushing, B.S. & Kramer, K.M. (2005). Mechanisms underlying epigenetic effects of early social experience: the role of neuropeptides and steroids. Neurosci Biobehav Rev, 29(7), 1089-1105.

Dabelea, D.; Hanson, R.L.; Lindsay, R.S.; Pettitt, D.J.; Imperatore, G.; Gabir, M.M.; Roumain, J.; Bennett, P.H. & Knowler, W.C. (2000). Intrauterine exposure to diabetes conveys risks for type 2 diabetes and obesity. Diabetes, 49, 2208–2211.

Deeb, S.S.; Fajas, L.; Nemoto, M.; Pihlajamaki, J.; Mykkanen, L.; Kuusisto, J.; Laakso, M.; Fujimoto, W. and Auwerx, J. (1998) A Pro12Ala substitution in PPARgamma2 associated with decreased receptor activity, lower body mass index and improved insulin sensitivity. Nat. Genet., 20, 284–287.

Doherty, A.S.; Mann, M.R.; Tremblay, K.D.; Bartolomei, M.S. & Schultz, R.M. (2000). Differential effects of culture on imprinted H19 expression in the preimplantation mouse embryo. Biol Reprod, 62(6), 1526-1535.

Dolinoy, D.C.; Weidman, J.R. & Jirtle, R.L. (2007). Epigenetic gene regulation: Linking early developmental environment to adult disease. Reproductive Toxicology, 23, 297–307.

Eaton, S.B.; Strassman, B.I.; Nesse, R.M.; Neel, J.V.; Ewald, P.W.; Williams, G.C.; Weder, A.B.; Eaton, S.B. III; Lindeberg, S.; Konner, M.J.; Mysterud, I. & Cordain, L. (2002). Evolutionary health promotion. Prev Med, 34, 109–118.

Egeland, G.M.; Skjaerven, R. & Irgens, L.M. (2000). Birth characteristics of women who develop gestational diabetes: population based study. BMJ, 321(7260), 546-547.

Ek, J.; Andersen, G.; Urhammer, S.A.; Gaede, P.H.; Drivsholm, T.; Borch-Johnsen, K.; Hansen, T.; Pedersen, O. (2001). Mutation analysis of peroxisome proliferatoractivated receptor-gamma coactivator-1 (PGC-1) and relationships of identified amino acid polymorphisms to Type II diabetes mellitus. Diabetologia, 44: 2220–2226.

Eriksson, K.F. & Lindgärde, F. (1991). Prevention of type 2 (non-insulin-dependent) diabetes mellitus by diet and physical exercise. The 6-year Malmo feasibility study. Diabetologia, 34(12), 891-898.

Forcales, S. & Puri, P. (2005). Signaling to the chromatin during skeletal myogenesis: Novel targets for pharmacological modulation of gene expression. Semin Cell Dev Biol, 16596–16611.

Forsen, T.; Eriksson, J.; Tuomilehto, J.; Reunanen, A.; Osmond, C. & Barker, D. (2000). The fetal and childhood growth of persons who develop type 2 diabetes. Ann Intern Med, 133(3), 176-182.

Gallou-Kabani, C. & Junien, C. (2005). Nutricional epigenomics of metabolic syndrome. New perspective against the epidemic. Diabetes, 1899-1906.

Garant, M.J.; Kao, W.H.; Brancati, F.; Coresh, J.; Rami, T.M.; Hanis, C.L.; Boerwinkle, E.; Shuldiner, A.R. (2002). Atherosclerosis Risk in Communities Study. SNP43 of CAPN10 and the risk of type 2 diabetes in African-Americans: the Atherosclerosis Risk in Communities Study. Diabetes, 51: 231–237.

Gloyn, A.L.; Weedon, M.N.; Owen, K.R.; Turner, M.J.; Knight, B.A.; Hitman, G.A.; Walker, M.; Levy, J.C.; Sampson, M.J.; Halford, S; McCarthy, M.I.; Hattersley, A.T.; Frayling, T.M. (2003) Large scale association studies of variants in genes encoding the pancreatic beta-cell K-ATP channel subunits Kir6.2 (KCNJ11) and SUR1 (ABCC8) confirm that the KCNJ11 E23K variant is associated with increased risk of Type 2 Diabetes. Diabetes, 52, 568–572.

Gough, S.C.; Saker, P.J.; Pritchard, L.E.; Merriman, T.R.; Merriman, M.E.; Rowe, B.R.; Kumar, S.; Aitman, T.; Barnett, A.H.; Turner, R.C. (1995). Mutation of the glucagon receptor gene and diabetes mellitus in the UK: association or founder effect? Hum Mol Genet, 4: 1609–1612.

Hager, J.; Hansen, L.; Vaisse, C.; Vionnet, N.; Philippi, A.; Poller, W. (1995). A missense mutation in the glucagon receptor gene is associated with non-insulin-dependent diabetes mellitus. Nat Genet, 9: 299–304.

Hara, K.; Tobe, K.; Okada, T.; Kadowaki, H.; Akanuma, Y.; Ito, C.; Kimura, S.; Kadowaki, T. (2002). A genetic variation in the PGC-1 gene could confer insulin resistance and susceptibility to Type II diabetes. Diabetologia, 45: 740–743.

Horikawa, Y.; Oda, N.; Cox, N.J.; Li, X.; Orho-Melander, M.; Hara, M.; Hinokio, Y.; Lindner, T.H.; Mashima, H.; Schwarz, P.E.; del Bosque-Plata; L., Horikawa, Y.; Oda, Y.; Yoshiuchi, I.; Colilla, S.; Polonsky, K.S.; Wei, S.; Concannon, P.; Iwasaki, N.; Schulze, J.; Baier, L.J.; Bogardus, C.; Groop, L.; Boerwinkle, E.; Hanis, C.L.; Bell, G.I. (2000). Genetic variation in the gene encoding calpain-10 is associated with type 2 diabetes mellitus. Nat Genet, 26: 163–175.

Jaquet, D.; Gaboriau, A.; Czernichow, P. & Levy-Marchal, C. (2000). Insulin resistance early in adulthood in subjects born with intrauterine growth retardation. J Clin Endocrinol Metab, 85(4), 1401-1406.

Jellema, A.; Zeegers, M.P.; Feskens, E.J.; Dagnelie, P.C.; Mensink, R.P. (2003). Gly972Arg variant in the insulin receptor substrate-1 gene and association with Type 2 diabetes: a meta-analysis of 27 studies. Diabetologia, 46: 990–995.

Kaur, J.; Singh, P. & Sowers, J. (2002). Diabetes and Cardiovascular Diseases. Am J Ther, 9, 510–515.

Khan, A.U. & Krishnamurthy, S. (2005). Histone modifications as key regulators of transcription. Front Biosci, 1(10), 866-872.

Kim, H.; Lee, S.H.; Kim, S.S.; Yoo, J.H. & Kim, C.J. (2007). The influence of maternal treadmill running during pregnancy on short-term memory and hippocampal cell survival in rat pups. Int J Dev Neurosci, 25(4), 243-249.

Kim, K.S.; Choi, S.M.; Shin, S.U.; Yang, H.S. & Yoon, Y. (2004). Effects of peroxisome proliferator-activated receptor-gamma 2 Pro12Ala polymorphism on body fat distribution in female Korean subjects. Metabolism, 53(12), 1538-1543.
PMid:11832527    PMCid:1370926

Knowler, W.C.; Barrett-Connor, E.; Fowler, S.E.; Hamman, R.F.; Lachin, J.M.; Walker, E.A. & Nathan, D.M. (2002). Diabetes Prevention Program Research Group. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med, 346(6), 393-403.

Kosaka, K.; Noda, M. & Kuzuya, T. (2005). Prevention of type 2 diabetes by lifestyle intervention: a Japanese trial in IGT males. Diabetes Res Clin Pract, 67(2), 152-162.

Kriska, A. (2003). Can a Physically active lifestyle prevent type 2 diabetes?. Exerc Sport Sci Rev, 31(3), 132-137.

Lee, H.H.; Kim, H.; Lee, J.W.; Kim, Y.S.; Yang, H.Y.; Chang, H.K.; Lee, T.H.; Shin, M.C.; Lee, M.H.; Shin, M.S.; Park, S.; Baek, S. & Kim, C.J. (2006). Maternal swimming during pregnancy enhances short-term memory and neurogenesis in the hippocampus of rat pups. Brain Dev, 28(3), 147-154.

Lindi, V.; Uusitupa, M.; Lindström, J.; Louheranta, A.; Erickson, J.; Valle, T.; Hämäläinem, H.; Ilanne-Parikka, P.; Keinänem-Kiukaanniemi, S.; Laakso, M. & Tuomiletho, J. for the Finnish Diabetes Prevention Study Group. (2002). Association Of The Pro12Ala Polymorphism In The PPAR-g2 Gene Whit 3-Year Incidence Of Type 2 Diabetes And Body Weight Change In The Finnish Diabetes Prevention Study. Diabetes, 51, 2581-2586.

Lindstrom, J.; Ilanne-Parikka, P.; Peltonen, M.; Aunola, S.; Eriksson, J.G.; Hemio, K.; Hamalainen, H.; Harkonen, P.; Keinanen-Kiukaanniemi, S.; Laakso, M.; Louheranta, A.; Mannelin, M.; Paturi, M.; Sundvall, J.; Valle, T.T.; Uusitupa, M. & Tuomilehto, J. (2006). Finnish Diabetes Prevention Study Group. Sustained reduction in the incidence of type 2 diabetes by lifestyle intervention: follow-up of the Finnish Diabetes Prevention Study. Lancet, 368(9548), 1673-1679.

Mager, U.; Lindi, V.; Lindstrom, J.; Eriksson, J.G.; Valle, T.T.; Hamalainen, H.; Ilanne-Parikka, P.; Keinanen-Kiukaanniemi, S.; Tuomilehto, J.; Laakso, M.; Pulkkinen, L. & Uusitupa, M. Finnish Diabetes Prevention Study Group. (2006). Association of the Leu72Met polymorphism of the ghrelin gene with the risk of Type 2 diabetes in subjects with impaired glucose tolerance in the Finnish Diabetes Prevention Study. Diabet Med, 23(6), 685-689.

Maier, S. & Olek, A. (2002). Diabetes: A Candidate Disease for Efficient DNA Methylation Profiling. J Nutr, 132, 2440S-2443S.

Malecki, M. (2005). Genetics of type 2 diabetes mellitus. Diabetes Res Clin Pract, 68(S1), S10-S21.

Maynard Smith, J. (1990). Models of a dual inheritance system. J Theor Biol, 143(1), 41-53.

McCarthy, M. (2002). Susceptibility gene discovery for common metabolic and endocrine traits. J Mol Endocrinol, 28, 1-17.

McCarthy, M. (2004). Progress in defining the molecular basis of type 2 diabetes mellitus through susceptibility-gene identification. Hum Mol Genet, 13(Spec N°1), R33-R41.

McGee, S.L. (2006). Hargreaves M. Exercise and skeletal muscle glucose transporter 4 expression: molecular mechanisms. Clin Exp Pharmacol Physiol, 33(4), 395-399.

McKenzie, J.A.; Weiss, E.P.; Ghiu, I.A.; Kulaputana, O.; Phares, D.A.; Ferrell, R.E. & Hagberg, J.M. (2004). Influence of the interleukin-6 -174 G/C gene polymorphism on exercise training-induced changes in glucose tolerance indexes. J Appl Physiol, 97(4), 1338-1342.

Neel, J.V. (1962). Diabetes mellitus a “thrifty” genotype rendered detrimental by “progress”? Am J Hum Genet, 14, 352-353.
PMid:10968815    PMCid:27469

Pan, X.R.; Li, G.W.; Hu, Y.H.; Wang, J.X.; Yang, W.Y.; An, Z.X.; Hu, Z.X.; Lin, J.; Xiao, J.Z.; Cao, H.B.; Liu, P.A.; Jiang, X.G.; Jiang, Y.Y.; Wang, J.P.; Zheng, H.; Zhang, H.; Bennett, P.H. & Howard, B.V. (1997). Effects of diet and exercise in preventing NIDDM in people with impaired glucose tolerance. The Da Qing IGT and Diabetes Study. Diabetes Care, 20(4), 537-544.

Parnpiansil, P.; Jutapakdeegul, N.; Chentanez, T. & Kotchabhakdi, N. (2003). Exercise during pregnancy increases hippocampal brain-derived neurotrophic factor mRNA expression and spatial learning in neonatal rat pup. Neurosci Lett, 352(1), 45-48.

Permutt, A.; Wasson, J. & Cox, N. (2005). Genetic epidemiology of diabetes. J Clin Invest, 115, 1431-1439.
PMid:15931378    PMCid:1137004

Poirier, L.A.; Brown, A.T.; Fink, L.M.; Wise, C.K. & Randolph, C.J. (2001). Delongchamp RR, Fonseca VA. Blood S-adenosylmethionine concentrations and lymphocyte methylenetetrahydrofolate reductase activity in diabetes mellitus and diabetic nephropathy. Metabolism, 50, 1014–1018.

Ramachandran, A.; Snehalatha, C.; Mary, S.; Mukesh, B.; Bhaskar, A.D. & Vijay, V. (2006). Indian Diabetes Prevention Programme (IDPP). The Indian Diabetes Prevention Programme shows that lifestyle modification and metformin prevent type 2 diabetes in Asian Indian subjects with impaired glucose tolerance (IDPP-1). Diabetologia, 49(2), 289-297.

Reik, W.; Römer, I.; Barton, S.C.; Surani, M.A.; Howlett, S.K. & Klose, J. (1993). Adult phenotype in the mouse can be affected by epigenetic events in the early embryo. Development, 119(3), 933-942.

Simmons, R. (2005). Developmental origins of adult metabolic disease: concepts and controversies. Trends Endocrinol Metab, 16(8), 390-394.

Sladek, R.; Rocheleau, G.; Rung, J.; Dina, C.; Shen, L.; Serre, D.; Boutin, P.; Vincent, D.; Belisle, A.; Hadjadj, S.; Balkau, B.; Heude, B.; Charpentier, G.; Hudson, T.J.; Montpetit, A.; Pshezhetsky, A.V.; Prentki, M.; Posner, B.I.; Balding, D.J.; Meyre, D.; Polychronakos, C. & Froguel, P. (2007). A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature, 445, 881-885.

Sng, J.C.; Taniura, H. & Yoneda, Y. (2004). A Tale of Early Response Genes. Biol Pharm Bull, 27(5), 606-612.

Sreekumar, R.; Halvatsiotis, P.; Schimke, J.C. & Nair, K.S. (2002). Gene Expression Profile in Skeletal Muscle of Type 2 Diabetes and the Effect of Insulin Treatment. Diabetes, 51, 1913-1920.

Valdez, R.; Athens, M.A.; Thompson, G.H.; Bradshaw, B.S. & Stern, M.P. (1994). Birthweight and adult health outcomes in a biethnic population in the USA. Diabetologia, 37(6), 624-631.

Voight, B.F.; Kudaravalli, S.; Wen, X. & Pritchard, J.K. (2006). A map of recent positive selection in the human genome. PLoS Biol, 4,e72.
PMid:16494531    PMCid:1382018

Waterland, R.A. & Jirtle, R.L. (2004). Early nutrition, epigenetic changes at transposons and imprinted genes, and enhanced susceptibility to adult chronic diseases. Nutrition, 20, 63-68.

Waterland, R.A.; Lin, J.R.; Smith, C.A. & Jirtle, R.L. (2006). Post-weaning diet affects genomic imprinting at the insulin-like growth factor 2 (Igf2) locus. Hum Mol Genet, 15(5), 705-716.

Waterland, RA. (2006). Epigenetic mechanisms and gastrointestinal development. J Pediatr, 149, s137-s142.

Weaver, I.C.; Cervoni, N.; Champagne, F.A.; D'Alessio, A.C.; Sharma, S.; Seckl, J.R.; Dymov, S.; Szyf, M. & Meaney, M.J. (2004). Epigenetic programming by maternal behavior. Nat Neurosci, 7, 847-854.

Wong, A.; Gottesman, I. & Petronis, A. (2005). Phenotypic differences in genetically identical organism: the epigenetic perspective. Human Molecular Genetics, 14, R11-R18.

Wren, J. & Garner, H. (2005). Data-mining analysis suggests an epigenetic pathogenesis for type 2 diabetes. Journal of Biomedicine and Biotechnology, 2, 104-112.
PMid:16046815    PMCid:1184044

Xu, M.; Li, X.; Wang, J.G.; Du, P.; Hong, J.; Gu, W.; Zhang, Y. & Ning, G. (2005). Glucose and lipid metabolism in relation to novel polymorphisms in the 5’-AMP-activated protein kinase γ gene in Chinese. Molecular Genetics and Metabolism, 86, 372-378.

Yamaoka, K. & Tango, T. (2005). Efficacy of lifestyle education to prevent type 2 diabetes: a meta-analysis of randomized controlled trials. Diabetes Care, 28(11), 2780-2786.

Yokomori, N.; Tawata, M. & Onaya, T. (1999). DNA demethylation during the differentiation of 3T3–L1 cells affects the expression of the mouse GLUT4 gene. Diabetes, 48, 685-690.

Zimmet, P.; Dowse, G. & Finch, C. (1990). The epidemiology and natural history of NIDDM—lessons from the South Pacific. Diabetes Metab Rev, 6, 91-124.

Zimmet, P.; Faaisu, S.; Ainuu, J.; Whitehouse, S.; Milne. B. & DeBoer, W. (1981). The prevalence of diabetes in the rural and urban populations of Western Samoa. Diabetes, 30, 45-51.

Zimmet, P.; Seluka, A.; Collins, J.; Currie, P.; Wicking, J. & DeBoer, W. (1977). Diabetes mellitus in an urbanized, isolated Polynesian population: The Funafuti survey. Diabetes, 26, 1101-1108.


Palabras clave/key words

diabetes; epigenética; inactividad física; epigenetic; physical inactivity.

Texto completo/Full Text:


------------------------ 0 -------------------------

RICYDE. Revista Internacional de Ciencias del Deporte
Publisher: Ramón Cantó Alcaraz
ISSN:1885-3137 - Periodicidad Trimestral / Quarterly
Creative Commons License