Mandatory lockdown impairs performance in professional soccer players. [El confinamiento obligatorio afectó al rendimiento de jugadores de fútbol profesional.]

Iván Peña-González, Alejandro Javaloyes, Fidel Agulló, Manuel Sempere, Aitor Soler, Manuel Moya-Ramón



COVID-19 caused a total halt in sport competition during 2020. The purpose of this study was to analyze the changes between pre- and post-lockdown competitive periods in the players’ workload variables in competition. Seventeen professional football players were monitored using a WIMU PRO® inertial device throughout the 2019-20 season. Anthropometric and physical fitness were assessed with the aim to relate possible associations between these characteristics and the workload changes in the pre- and post-lockdown periods. During the lockdown, players carried out an 8-week guided self-training. There was a general decrement in the players’ physical workload demands in competition, and the parameters related to high-intensity actions as accelerations and decelerations (-8.96% [ES: 0.64] and -11.04% [ES: 0.77] respectively; p < .05), Ind HSR (-35.57% [ES: 0.92]; p = .002), HMLD (-8.58% [ES: 0.66]; p = .016), PLOAD (-7.03% [ES: 0.54]; p = .047) and Vmax (-3.80% [ES: 0.65]; p = .016) can be highlighted. The results showed high negative correlations between match workload variables prior to the lockdown and the percentage of change in these variables after the lockdown period. Individual percentages of change showed high variability in players’ changes. Individual self-training programs should be reviewed to minimize the impact of a “detraining” period in players’ physical performance during possible new lockdown periods.


El COVID-19 causó un parón total en las competiciones deportivas durante 2020. El objetivo de este estudio fue analizar los cambios en las variables de carga de trabajo en competición entre los periodos competitivos pre- y post-confinamiento. Diecisiete jugadores de fútbol profesional fueron monitorizados usando el dispositivo inercial WIMU PRO® durante la temporada 2019-20. Se registraron los valores antropométricos y de rendimiento físico con el objetivo de buscar posibles asociaciones entre esas características y cambios en las variables de carga de trabajo en los periodos pre- y post-confinamiento. Durante el confinamiento, los jugadores realizaron un auto-entrenamiento guiado de 8-semanas. Se encontró un descenso generalizado en la carga de trabajo de los jugadores en competición y en los parámetros relacionados con las acciones a alta intensidad como aceleraciones y deceleraciones (-8.96% [ES: 0.64] y -11.04% [ES: 0.77] respectivamente; p < .05), HSR Ind (-35.57% [ES: 0.92]; p = .002), HMLD (-8.58% [ES: 0.66]; p = .016), PLOAD (-7.03% [ES: 0.54]; p = .047) y Vmax (-3.80% [ES: 0.65]; p = .016). Los resultados mostraron altas correlaciones negativas entre porcentajes alcanzados por las variables según la carga de trabajo en partidos antes-después del confinamiento. Los porcentajes de cambio individual mostraron una alta variabilidad entre jugadores. Los programas de auto-entrenamiento realizados individualmente durante el confinamiento deberían ser revisados para minimizar el impacto de un periodo de desentrenamiento en el rendimiento físico de los jugadores durante un posible nuevo periodo de confinamiento.


Barreira, P.; Robinson, M. A.; Drust, B.; Nedergaard, N.; Raja Azidin, R. M. F., & Vanrenterghem, J. (2017). Mechanical Player LoadTM using trunk-mounted accelerometry in football: Is it a reliable, task- and player-specific observation? Journal of Sports Sciences, 35(17), 1674–1681.

Borges do Nascimento, I. J.; Cacic, N.; Abdulazeem, H. M.; von Groote, T. C.; Jayarajah, U.; Weerasekara, I.; Esfahani, M. A.; Civile, V. T.; Marusic, A.; Jeroncic, A.; Carvas Junior, N.; Pericic, T. P.; Zakarija-Grkovic, I.; Meirelles Guimarães, S. M.; Luigi Bragazzi, N.; Bjorklund, M.; Sofi-Mahmudi, A.; Altujjar, M.; Tian, M., & Marcolino, M. S. (2020). Novel Coronavirus Infection (COVID-19) in Humans: A Scoping Review and Meta-Analysis. Journal of Clinical Medicine, 9(4), 941.

Bradley, P. S.; Carling, C.; Gomez Diaz, A.; Hood, P.; Barnes, C.; Ade, J.; Boddy, M.; Krustrup, P., & Mohr, M. (2013). Match performance and physical capacity of players in the top three competitive standards of English professional soccer. Human Movement Science, 32(4), 808–821.

Bradley, P. S.; Di Mascio, M.; Peart, D.; Olsen, P., & Sheldon, B. (2010). High-Intensity Activity Profiles of Elite Soccer Players at Different Performance Levels. Journal of Strength and Conditioning Research, 24(9), 2343–2351.

Brito de Souza, D.; González-García, J.; López-Del Campo, R.; Resta, R.; Martínez Buldú, J.; Wilk, M., & Coso, J. (2021). Players’ physical performance in LaLiga when the competition resumes after COVID-19: insights from previous seasons. Biology of Sport, 38(1), 3–7.

Buchheit, M. (2008). The 30-15 intermittent fitness test: Accuracy for individualizing interval training of young intermittent sport players. Journal of Strength and Conditioning Research, 22(2), 365–374.

Carter, J. E. (1982). Body Composition of Montreal Olympic Athletes. In Physical Structure of Olympic Athletes (pp. 107–116). Karger Publishers.

Christensen, P. M.; Krustrup, P.; Gunnarsson, T. P.; Kiilerich, K.; Nybo, L., & Bangsbo, J. (2011). VO2 kinetics and performance in soccer players after intense training and inactivity. Medicine and Science in Sports and Exercise, 43(9), 1716–1724.

Cohen, J. (1992). A power primer. Psychological Bulletin, 112(1), 155–159.

Di Gennaro, F.; Pizzol, D.; Marotta, C.; Antunes, M.; Racalbuto, V.; Veronese, N., & Smith, L. (2020). Coronavirus diseases (COVID-19) current status and future perspectives: A narrative review. Journal of Environmental Research and Public Health 17(8).

Di Salvo, V.; Baron, R.; Tschan, H.; Calderon Montero, F. J.; Bachl, N., & Pigozzi, F. (2007). Performance characteristics according to playing position in elite soccer. International Journal of Sports Medicine, 28(3), 222–227.

Fleck, S. (1994). Detraining: Its effects on endurance and strength. Strength & Conditioning Journal, 16(1), 22–28.

Hopkins, W. G.; Marshall, S. W.; Batterham, A. M., & Hanin, J. (2009). Progressive statistics for studies in sports medicine and exercise science. Medicine and Science in Sports and Exercise, 41(1), 3–12.

Hulin, B. T.; Gabbett, T. J.; Lawson, D. W.; Caputi, P., & Sampson, J. A. (2016). The acute: Chronic workload ratio predicts injury: High chronic workload may decrease injury risk in elite rugby league players. British Journal of Sports Medicine 50(4), 231–236).

Impellizzeri, F. M.; Franchi, M. V.; Sarto, F.; Meyer, T., & Coutts, A. J. (2020). Sharing information is probably more helpful than providing generic training recommendations on return to play after COVID-19 home confinement. Science and Medicine in Football 4(3), 169–170).

Impellizzeri, F. M., & Marcora, S. M. (2009). Test validation in sport physiology: Lessons learned from clinimetrics. International Journal of Sports Physiology and Performance 4(2) 269–277).

Joo, C. H. (2018). The effects of short-term detraining and retraining on physical fitness in elite soccer players. PLOS ONE, 13(5), e0196212.

Koundourakis, N. E.; Androulakis, N. E.; Malliaraki, N.; Tsatsanis, C.; Venihaki, M., & Margioris, A. N. (2014). Discrepancy between Exercise Performance, Body Composition, and Sex Steroid Response after a Six-Week Detraining Period in Professional Soccer Players. PLoS ONE, 9(2), e87803.

Mohr, M.; Krustrup, P., & Bangsbo, J. (2003). Match performance of high-standard soccer players with special reference to development of fatigue. Journal of Sports Sciences, 21(7), 519–528.

Mohr, M.; Nassis, G. P.; Brito, J.; Randers, M. B.; Castagna, C.; Parnell, D., & Krustrup, P. (2020). Return to elite football after the COVID-19 lockdown. Managing Sport and Leisure.

Mujika, I., & Padilla, S. (2000a). Detraining: Loss of training-induced physiological and performance adaptations. Part II: Long term insufficient training stimulus. Sports Medicine 30(3), 145–154.

Mujika, I., & Padilla, S. (2000b). Detraining: Loss of training induced physiological and performance adaptation. Part I. Short term insufficient training stimulus. Sports Medicine, 30(2), 79–87.

Mujika, I., & Padilla, S. (2001). Cardiorespiratory and metabolic characteristics of detraining in humans. Medicine and Science in Sports and Exercise, 33(3), 413–421.

Nakamura, D.; Suzuki, T.; Yasumatsu, M., & Akimoto, T. (2012). Moderate Running and Plyometric Training During Off-Season Did Not Show a Significant Difference on Soccer-Related High-Intensity Performances Compared with No-Training Controls. Journal of Strength and Conditioning Research, 26(12), 3392–3397.

Neufer, P.; Costill, D.; Fielding, R.; Flynn, M., & Kirwan, J. (1987). Effect of reduced training on muscular strength and endurance in competitive swimmers. Medicine and Science in Sports and Exercise, 19(5), 486–490.

Rampinini, E., Donghi, F., Martin, M., Bosio, A., Riggio, M., & Maffiuletti, N. A. (2021). Impact of COVID-19 Lockdown on Serie A Soccer Players’ Physical Qualities. International Journal of Sports Medicine, 42(10):917-923. 

Rampinini, E., Martin, M., Bosio, A., Donghi, F., Carlomagno, D., Riggio, M., & Coutts, A. J. (2021). Impact of COVID-19 lockdown on professional soccer players’ match physical activities. Science and Medicine in Football, Ahead of print.

Rodríguez-Fernández, A.; Sánchez-Sánchez, J.; Ramirez-Campillo, R.; Rodríguez-Marroyo, J. A.; Villa Vicente, J. G., & Nakamura, F. Y. (2018). Effects of short-term in-season break detraining on repeated-sprint ability and intermittent endurance according to initial performance of soccer player. PLOS ONE, 13(8), e0201111.

Rodríguez-Fernández, A.; Villa, J. G.; Sánchez-Sánchez, J., & Rodríguez-Marroyo, J. A. (2020). Effectiveness of a Generic vs. Specific Program Training to Prevent the Short-Term Detraining on Repeated-Sprint Ability of Youth Soccer Players. Journal of Strength and Conditioning Research, 34(8), 2128–2135.

Sarto, F.; Impellizzeri, F. M.; Spörri, J.; Porcelli, S.; Olmo, J.; Requena, B.; Suarez-Arrones, L.; Arundale, A.; Bilsborough, J. C.; Buchheit, M.; Clubb, J.; Coutts, A.; Nabhan, D.; Torres-Ronda, L.; Mendez-Villanueva, A.; Mujika, I.; Maffiuletti, N. A., & Franchi, M. (2020). Impact of potential physiological changes due to COVID-19 home confinement on athlete health protection in elite sports: a call for awareness in sports programming. Sports medicine 50(8), 1417-1419.

Seshadri, D. R., Thom, M. L., Harlow, E. R., Drummond, C. K., & Voos, J. E. (2021). Case report: return to sport following the CoViD-19 lockdown and its impact on injury rates in the German Soccer League. Frontiers in sports and active living, 3,

Stølen, T.; Chamari, K.; Castagna, C., & Wisløff, U. (2005). Physiology of Soccer. Sports Medicine, 35(6), 501–536.

Stone, N. M., & Kilding, A. E. (2009). Aerobic Conditioning for Team Sport Athletes. Sports Medicine 39(8), 615–642).

Zhanneta, K.; Irina, S.; Tatyana, B.; Olena, R.; Olena, L., & Anna, I. (2015). The applying of the concept of individualization in sport. Journal of Physical Education and Sport, 15(2), 172–177.

Palabras clave/key words

COVID-19; Detraining; Team sports; Fitness testing; Desentrenamiento; Deportes colectivos; Evaluación física.

Texto completo/Full Text:

PDF (English)

------------------------ 0 -------------------------

RICYDE. Revista Internacional de Ciencias del Deporte

Publisher: Ramón Cantó Alcaraz
ISSN:1885-3137 - Periodicidad Trimestral / Quarterly
Creative Commons License