Control biológico del entrenamiento de resistencia. (Biological control of endurance training).

Francisco Javier Calderón Montero, Pedro José Benito Peinado, Agustín Meléndez-Ortega, Marcela González Gross

Resumen


La alta exigencia en los deportistas de élite hace cada vez más necesario controlar el proceso de adaptación al entrenamiento. El objetivo de esta revisión es analizar la información biológica de un análisis de sangre, al objeto de obtener información de la carga de entrenamiento en atletas de resistencia. La mayor parte de los parámetros sanguíneos han sido empleados, más que para determinar el proceso del entrenamiento, precisamente, para lo opuesto: el sobreentrenamiento. La concentración en plasma de sustratos metabólicos (glucosa y ácidos grasos) no son parámetros que puedan utilizarse para controlar el entrenamiento, debido a las bajas especificidad y sensibilidad. No obstante, la concentración de determinados enzimas que intervienen en la utilización de los sustratos puede ser importante. Valores de creatín kinasa superiores a 200 U/l en una persona sana sugiere claramente que la carga de entrenamiento total de una determinada sesión ha sido elevada. La concentración en plasma de algún producto de degradación del catabolismo también puede señalar la adaptación del organismo al entrenamiento. La concentración de ácido láctico en plasma es la herramienta más común en la valoración de la carga de entrenamiento. La concentración de urea es un buen marcador biológico de la carga de entrenamiento. Valores superiores a 8 mmol/l en varones y de 6,5 mmol/l en mujeres, indican que el entrenamiento ha sido muy intenso. La determinación de otros productos (amonio) o sustratos (glutamina) se han utilizado para detectar el sobreentrenamiento.

Palabras clave/key words: entrenamiento | rendimiento | control biologico | training | performance | biological control

Abstract

The high exigency in the elite sportsmen does more necessary to control the process of training adaptation. The purpose of this review is to analyze the biological information of a blood analysis to obtain data of load training in endurance athletes. Most blood parameters has been used to evaluate the overtraining state instead of determining the training process. The plasma concentrations of metabolic substrates (glucose and fatty acids) are not parameters that can be used to control the training, due to their low specificity and sensitivity. However, the concentration of certain enzymes that takes part in the use of the substrates can be important. Creatin kinase values higher than 200 U/l, in healthy persons suggest that the total load of the training session has been elevated. The plasma concentration of some product of catabolism can also indicate the adaptation of the organism to the training. Lactic concentration in plasma is used frequently in the control of training load. The urea concentration is a good biological marker of training load. Higher values than 8 mmol/l in male and of 6.5 mmol/l in female, indicate that the training has been very hard. The determination of other products (ammonium) or substrates (glutamine) has been used to detect the overtraining.

doi:10.5232/ricyde2006.00205

---------------------------------------------------------------------

Referencias/references

Billat, L. V. (1996). Use of blood lactate measurements for prediction of exercise performance and for control of training. Recommendations for long-distance running. Sports Med, 22(3), 157-175.
doi:10.2165/00007256-199622030-00003
PMid:8883213

Fukuba, Y., Walsh, M. L., Cameron, B. J., Morton, R. H., Kenny, C. T., & Banister, E. W. (1992). The clearance rate of exercise-elevated blood lactate following physical training. Ann Physiol Anthropol, 11(3), 369-376.
PMid:1642738

Gastmann, U. A., & Lehmann, M. J. (1998). Overtraining and the BCAA hypothesis. Med Sci Sports Exerc, 30(7), 1173-1178.
doi:10.1097/00005768-199807000-00025

Guezennec, C. Y., Abdelmalki, A., Serrurier, B., Merino, D., Bigard, X., Berthelot, M., et al. (1998). Effects of prolonged exercise on brain ammonia and amino acids. Int J Sports Med, 19(5), 323-327.
doi:10.1055/s-2007-971925
PMid:9721055

Hagerman, F. C. (1984). Applied physiology of rowing. Sports Med, 1(4), 303-326.
doi:10.2165/00007256-198401040-00005
PMid:6390606

Harris, P. A., Marlin, D. J., & Gray, J. (1998). Plasma aspartate aminotransferase and creatine kinase activities in thoroughbred racehorses in relation to age, sex, exercise and training. Vet J, 155(3), 295-304.
doi:10.1016/S1090-0233(05)80026-7

Hartmann, U., & Mester, J. (2000). Training and overtraining markers in selected sport events. Med Sci Sports Exerc, 32(1), 209-215.
doi:10.1097/00005768-200001000-00031

Hug, M., Mullis, P. E., Vogt, M., Ventura, N., & Hoppeler, H. (2003). Training modalities: over-reaching and over-training in athletes, including a study of the role of hormones. Best Pract Res Clin Endocrinol Metab, 17(2), 191-209.
doi:10.1016/S1521-690X(02)00104-5

Layman, D. K. (2002). Role of leucine in protein metabolism during exercise and recovery. Can J Appl Physiol, 27(6), 646-663.
PMid:12501002

Lehmann, M., Dickhuth, H. H., Gendrisch, G., Lazar, W., Thum, M., Kaminski, R., et al. (1991). Training-overtraining. A prospective, experimental study with experienced middle- and long-distance runners. Int J Sports Med, 12(5), 444-452.
doi:10.1055/s-2007-1024711
PMid:1752709

Manetta, J., Brun, J. F., Mercier, J., & Prefaut, C. (2000). The effects of exercise training intensification on glucose disposal in elite cyclists. Int J Sports Med, 21(5), 338-343.
doi:10.1055/s-2000-3781
PMid:10950442

Millet, G. P., & Vleck, V. E. (2000). Physiological and biomechanical adaptations to the cycle to run transition in Olympic triathlon: review and practical recommendations fortraining. Br J Sports Med, 34(5), 384-390.
doi:10.1136/bjsm.34.5.384
PMid:11049151    PMCid:1756235

Parry-Billings, M., Budgett, R., Koutedakis, Y., Blomstrand, E., Brooks, S., Williams, C., et al. (1992). Plasma amino acid concentrations in the overtraining syndrome: possible effects on the immune system. Med Sci Sports Exerc, 24(12), 1353-1358.
PMid:1470018

Petibois, C., Cazorla, G., & Deleris, G. (2003). The biological and metabolic adaptations to 12 months training in elite rowers. Int J Sports Med, 24(1), 36-42.
doi:10.1055/s-2003-37194
PMid:12582950

Petibois, C., Cazorla, G., Poortmans, J. R., & Deleris, G. (2002). Biochemical aspects ofovertraining in endurance sports: a review. Sports Med, 32(13), 867-878.
doi:10.2165/00007256-200232130-00005
PMid:12392446

Petibois, C., Cazorla, G., Poortmans, J. R., & Deleris, G. (2003). Biochemical aspects of overtraining in endurance sports : the metabolism alteration process syndrome. Sports Med, 33(2), 83-94.
doi:10.2165/00007256-200333020-00001
PMid:12617688

Rennie, M. J., & Tipton, K. D. (2000). Protein and amino acid metabolism during and after exercise and the effects of nutrition. Annu Rev Nutr, 20, 457-483.
doi:10.1146/annurev.nutr.20.1.457
PMid:10940342

Rowbottom, D. G., Keast, D., & Morton, A. R. (1996). The emerging role of glutamine as an indicator of exercise stress and overtraining. Sports Med, 21(2), 80-97.
doi:10.2165/00007256-199621020-00002
PMid:8775515

Rumley, A. G., Pettigrew, A. R., Colgan, M. E., Taylor, R., Grant, S., Manzie, A., et al. (1985). Serum lactate dehydrogenase and creatine kinase during marathon training. Br J Sports Med, 19(3), 152-155.
doi:10.1136/bjsm.19.3.152
PMid:4075065    PMCid:1478243

Seene, T., Kaasik, P., Alev, K., Pehme, A., & Riso, E. M. (2004). Composition and turnover of contractile proteins in volume-overtrained skeletal muscle. Int J Sports Med, 25(6), 438-445.
doi:10.1055/s-2004-820935
PMid:15346232

Smith, D. J. (2003). A framework for understanding the training process leading to elite performance. Sports Med, 33(15), 1103-1126.
doi:10.2165/00007256-200333150-00003
PMid:14719980

Tabata, I., Atomi, Y., & Miyashita, M. (1984). Blood glucose concentration dependent ACTH and cortisol responses to prolonged exercise. Clin Physiol, 4(4), 299-307.
doi:10.1111/j.1475-097X.1984.tb00805.x
PMid:6088160

Temple, M. Y., Bar-Or, O., & Riddell, M. C. (1995). The reliability and repeatability of the blood glucose response to prolonged exercise in adolescent boys with IDDM. Diabetes Care, 18(3), 326-332.
doi:10.2337/diacare.18.3.326
PMid:7555475

Tipton, K. D., & Wolfe, R. R. (1998). Exercise-induced changes in protein metabolism. Acta Physiol Scand, 162(3), 377-387.
doi:10.1046/j.1365-201X.1998.00306.x
PMid:9578384

Tipton, K. D., & Wolfe, R. R. (2001). Exercise, protein metabolism, and muscle growth. Int J Sport Nutr Exerc Metab, 11(1), 109-132.
PMid:11255140

Urhausen, A., Gabriel, H., & Kindermann, W. (1995). Blood hormones as markers of training stress and overtraining. Sports Med, 20(4), 251-276.
doi:10.2165/00007256-199520040-00004
PMid:8584849

Urhausen, A., & Kindermann, W. (2002). Diagnosis of overtraining: what tools do we have? Sports Med, 32(2), 95-102.
doi:10.2165/00007256-200232020-00002
PMid:11817995

Varlet-Marie, E., Maso, F., Lac, G., & Brun, J. F. (2004). Hemorheological disturbances in the overtraining syndrome. Clin Hemorheol Microcirc, 30(3-4), 211-218.
PMid:15258345

Yuan, Y., So, R., Wong, S., & Chan, K. M. (2002). Ammonia threshold--comparison to lactate threshold, correlation to other physiological parameters and response to training. Scand J Med Sci Sports, 12(6), 358-364.
doi:10.1034/j.1600-0838.2002.00185.x
PMid:12453163

Zendzian-Piotrowska, M., & Gorski, J. (1993). Metabolic adaptation to daily exercise of moderate intensity to exhaustion in the rat. Eur J Appl Physiol Occup Physiol, 67(1), 77- 82.
doi:10.1007/BF00377709

---------------------------------------------------------------------

 


Palabras clave/key words


entrenamiento; rendimiento; control biologico; training; performance; biological control

Texto completo/Full Text:

PDF




------------------------ 0 -------------------------

RICYDE. Revista Internacional de Ciencias del Deporte
logopublisher_168
Publisher: Ramón Cantó Alcaraz
ISSN:1885-3137 - Periodicidad Trimestral / Quarterly
Creative Commons License