Oxygen uptake of overweight and obese children at different stages of a progressive treadmill test. (Consumo de oxígeno de niños y niñas con sobrepeso y obesos en los diferentes estadios de una prueba progresiva en un tapiz rodante).

Agustín Meléndez-Ortega, Catherine Lucy Davis, Paule Barbeau, Colleen Ann Boyle



Introduction: Maximal oxygen uptake (VO2 max) is associated with cardiovascular and metabolic risks but it is difficult to assess in obese children. The objective of this study was to develop an equation to estimate VO2 (mL/kg/min) and to check the % of tests that were maximal according to recommended criteria. Methods: Stress tests were analyzed of 222 subjects (94 male and 128 female with a BMI above the 85 percentile for age and sex), and repeated 4 months later. Mean age was 9.4 + 1.1 years and weighed 52.4 + 13.3 kg. Body fat % (40.5 + 6.2) was determined by DXA (Hologic QDR 4500W). The protocol on the treadmill started with a warm up at 2.5 and 3 mph with a slope of 0% and 2%. The speed was kept at 3 mph for all the stages and the slope was increased 2% every 2 minutes. Statistical analysis (descriptive, t-test and ANOVAS 2x2x2) was done with SPSS 15.0. Results: Only 35% of the tests were maximal. The equation calculates was Y = 2.6x + 22.3 (x = protocol stage). Data pre and post treatment were not statistically different. Discussion: Increments in VO2 were consistent despite subject diversity (sex, % body fat, physical fitness, treatment). Conclusion: To be able to estimate VO2 at the different stages of the test without complex equipment or specialized staff, will facilitate the performance of stress tests on a daily basis.

Key words: Childhood obesity and overweight, estimation of VO2, stress test protocols.


Introducción: El consumo máximo de oxígeno (VO2 max) está asociado con riesgos cardiovasculares y metabólicos pero resulta difícil valorarlo en niños y niñas obesos. El objetivo de este trabajo fue desarrollar una ecuación para estimar su VO2 (mL/kg/min) y comprobar el porcentaje de pruebas máximas según los criterios recomendados. Métodos: Se analizaron las pruebas de esfuerzo de 222 sujetos (94 varones y 128 mujeres con un IMC superior al percentil 85 para su edad y sexo), y las repetidas a los 4 meses. Su edad era 9,4 + 1,1 años y pesaban 52,4 + 13,3 kg. El % de grasa corporal (40,5 + 6,2) se determinó mediante DXA (Hologic QDR 4500W). El protocolo del tapiz rodante comenzó calentando a 4,02 km/h y a 4,83 km/h con pendientes del 0% y 2%. La velocidad se mantuvo a 4,83 km/h en los estadíos de la prueba incrementando la pendiente un 2% cada 2 minutos. El análisis estadístico (descriptivo, t-tests y ANOVAS 2x2x2) se realizó con SPSS 15.0. Resultados: Sólo 35% de las pruebas resultaron máximas. La ecuación resultante fue Y = 2,6x + 22,3 (x = estadío del protocolo). Los datos pre y post tratamiento no mostraron diferencias significativas. Discusión: Los incrementos del VO2 resultaron consistentes a pesar de la diversidad de los sujetos (sexo, % de grasa, niveles de condición física, tratamiento). Conclusión: Poder estimar el VO2 en los distintos estadíos de la prueba sin necesidad de equipos complejos, caros, y personal especializado, facilitará la realización de pruebas de esfuerzos en la práctica diaria.

Palabras clave: estimación del VO2; obesidad y sobrepeso infantil; protocolos de pruebas de esfuerzo.


PMID 21218170 - click here to show this article in PubMed database

Texto completo en PDF



Andersen, LB. Harro, M. et al. (2006). Physical fitness and clustered cardiovascular risk in children: a cross-sectional study. (The European Youth Heart Study) Lancet 368: 299-304.

Clausen, JO., K. Borch-Jonen, et al. (1996). Insulin sensitive index, acute insulin response, and glucose effectiveness in a population-based sample of 380 young healthy Caucasians. Analysis of the impact of gender, body fat, physical fitness, and life-style factors. Journal of Clinical Investigation 98: 1195-1209.
PMid:8787683    PMCid:507542

Endre, T., I. Mattiasson, et al. (1994). Insulin resistance is coupled to low physical fitness in normotensive men with a family history of hypertension. Journal of Hypertension 12: 81-88.

Eriksson, KF., y F. Lindgarde (1996). Poor physical fitness, and impaired early insulin response but late hyperinsulinemia, as predictors of NIDDM in middle-aged Swedish men. Diabetologia 39: 573-579.

Fagot-Campagna, A., D. Pettit, et al. (2000). Type 2 diabetes among North American children and adolescents: An epidemiological review and a public health perspective. Journal of Pediatrics 136: 664-672.

Gutin, B., Owens, S. et al. (1997). Weight-independent cardiovascular fitness and coronary risk factors. Arch Pediatr Adolesc Medicine 151 (May): 462-465.

Gutin, B., Barbeau, P. et al. (2002). Effects of exercise intensity on cardiovascular fitness, total body composition, and visceral adiposity of obese adolescents. Am J Clin Nutr 75: 818-826.

Gutin, B.; Yin, Z. et al. (2004). Relations of fatness and fitness to fasting insulin in black and white adolescents. J Pediatr 145: 737-743.

Gutin, B. Yin Z, et al. (2005). Relations of body fatness and cardiovascular fitness to lipid profile in black and white adolescents. Pediatric Research 58 (1): 78-82.

Gutin, B. (2008). Child Obesity Can Be Reduced with Vigorous Activity rather than Restriction of Energy Intake. Obesity 16: 2193- 2196.

Krekoukia, M.; Nassis, GP. Et al. (2007). Elevated total and central adiposity and low physical activity are associated with insuline resistance in children. Metabolism 56: 206-213.

Mader, A. y H. Heck, (1986). A theory of the metabolic origen of anaerobic threshold. International Journal of Sport Medicine 7: 45-65

Noble, BJ. y RJ Robertson (1999). Perceived Exertion. Champaign,Ill.: Human Kinetics.

Nyholm, B. A. Mengel, et al. (1996). Insulin resistance in relatives of NIDM patients: the role of physical fitness and muscle metabolism. Diabetologia 39: 813-822.

Ogden, CL. RJ Kuczmarski, et al. (2002). Centers for Disease Control and Prevention 2000 Growth Charts for the United States: Improvements to the 1977 National Center for Health Statistics Version. Pediatrics 109: 45-60.

Powell, K. y S. Blair (1994). The public health burdens of sedentary living habits: Theoretical but realistic estimates. Med. Sci. Sports Exerc. 26:851-856.

Rivera-Brown, A. M., M. A. Rivera, et al. (1995). Reliability of VO2 max in adolescent runners: A comparison Between Plateau Achievers and Nonachievers. Pediatric Exercise Science 7(2): 203-210.

Rosen, C: y Bouxsein, M (2006). Mechanisms of disease: Is osteoporosis the obesity of bone?. Nature Clin Pract Rheumathol 2: 35-43.

Rowland, T. W. (1993). Aerobic Exercise Testing Protocols. In Pediatric Laboratory Exercise. Testing Clinical Guide. T. W. Rowland. Illinois, Human Kinetics.
PMid:17959771    PMCid:2077057

Rubin, C.: Capilla, E. et al. (2007). Adipogenesis is inhibited by brief, daily exposure to high-frequency, extremely low-magnitude mechanical signals. Proc Natl Acad Sci USA: 104: 17879-17884.

Siconolfi, SF., TM. Lasater, et al. (1985). Self-reported physical activity compared with maximal oxygen uptake. Am J. Epidemiol. 122(3): 452-457.

Troiano, R. y K. Flegal (1998). Overweight children and adolescents: Description, epidemiology, and demographics. Pediatric 101: 497-504.

Whitaker R., J. Wright, et al. Predicting obesity in young adulthood from childhood and parental obesity. NEJM 1997; 337(13):869-873.

Washington, R. L. (1993). Anaerobic Threshold. Pediatric Laboratory Exercise Testing: Clinical Guidelines. T. W. Rowland. Champaign, Human Kinetics: 115-129.


Palabras clave/key words

Childhood obesity and overweight; estimation of VO2; stress test protocols; estimación del VO2; obesidad y sobrepeso infantil; protocolos de pruebas de esfuerzo.

Texto completo/Full Text:


------------------------ 0 -------------------------

RICYDE. Revista Internacional de Ciencias del Deporte

Publisher: Ramón Cantó Alcaraz
ISSN:1885-3137 - Periodicidad Trimestral / Quarterly
Creative Commons License