Contribución segmentaria de los saltos con contramovimiento en vertical y en horizontal. [Segmental contribution on countermovement vertical and horizontal jumps].

Marcos Gutiérrez-Dávila, Juan Manuel Garrido, F. José Amaro, Francisco J. Rojas

Resumen


El propósito ha sido realizar un análisis dinámico y cinemático sobre los saltos verticales (SV) y horizontales (SH) y cuantificar la aportación de los segmentos corporales al desplazamiento del centro de masa (CM) durante la fase de propulsión. Han participado 28 deportistas practicantes de modalidades deportivas donde el salto vertical constituye una habilidad básica. Se ha utilizado una plataforma de fuerza, operando a 500 Hz, sincronizada temporalmente a una cámara de vídeo a 210 Hz que registraba el plano sagital de los saltos. Los saltos han sido considerados como un movimiento simétrico que se desarrolla en un plano, compuesto por un modelo mecánico coordinado simplificado de ocho segmentos. En la condición SV, los participantes debían de realizar un salto vertical máximo partiendo de una posición erguida sobre la plataforma de fuerza. En la condición SH, los participantes debían realizar un salto máximo en horizontal desde la misma posición. El tiempo de batida ha sido superior en SH con respecto a SV, (0.898 vs 1.056 s), constatándose una estrategia de rotación-extensión para SH. Los resultados ponen de manifiesto que la fuerza neta ejercida durante el impulso de frenado es mayor para SV debido a la mayor velocidad radial al inicio del impulso de frenado (-1.166 vs -0.992 m/s). Existe una mayor participación de las articulaciones del tobillo y la cadera plasmada en la mayor contribución del tronco en SH durante toda la batida, además de constatarse una mayor contribución de las extremidades superiores al desplazamiento vertical del CM en SV.

Abstract

The main aim of this research was a dynamics and kinematics analysis of vertical (SV) and horizontal (SH) jumps and quantify the body segments’ contribution to center of mass, CM, displacement during the propulsion phase. 28 athletes from different sport modalities where the vertical jump is a basic skill have participated. We used a force platform, operating at 500 Hz, time-synchronized to a video camera that recorded at 210 Hz the sagital plane of the jumps performed on the platform. The jumps have been considered as a symmetrical movement taking place in a plane, with a mechanical coordinated model of eight segments. In the SV condition, participants had to perform a maximum vertical jump, starting from a standing position on the force platform. In the SH condition, participants had to perform a maximal horizontal jump starting from the same position. The results show a greater time for the jump in SH, (0.898 vs 1.056 s) using a strategy extension-rotation in the horizontal jumps. The net force exerted during the braking impulse is higher for SV due to the greater velocity at the beginning of this phase (-1.166 vs -0.992 m/s). There was a greater involvement of the ankle and hip in SH, with a higher contribution of the trunk during the jump, also there was a greater contribution of the arms to the vertical displacement of the CM in SV.

http://dx.doi.org/10.5232/ricyde2014.03801

---------------------------------------------------------------------------

Referencias/references

Aguado, X.; Izquierdo, M., & Montesinos, J.L. (1997). Kinematic and kinetic factors related to the standing long jump performance. Journal of Human Movement Studies, 32, 156-169

Aragón-Vargas, L. F. (2000). Evaluation of four vertical jump tests: Methodology, reliability, validity and accuracy. Measurement in Physical Education and Exercise Science, 4, 215–228.
http://dx.doi.org/10.1207/S15327841MPEE0404_2

Ashby B.M., & Heegaard, J.H. (2002) Role of arm motion in the standing long jump. Journal of Biomechanics, 35, 1631-1637.
http://dx.doi.org/10.1016/S0021-9290(02)00239-7

Ball, N.B., & Zanetti, S. (2012) Relationship between reactive strength variables in horizontal and vertical drop jumps. Journal of Strength and Conditioning Research, 26 (5), 1407-1412.
http://dx.doi.org/10.1519/JSC.0b013e3182510870

Domire, Z.J., & Challis, J.H. (2010): An induced energy analysis to determine the mechanism for performance enhancement as a result of arm swing during dumping. Sports Biomechanics, 9(1), 38-46.
http://dx.doi.org/10.1080/14763141003692639

Eloranta, V. (2003) Influence of sports background on leg muscle coordination in vertical jumps. Electromyography Clinical Neurophysiology, 43, 141-156.

Feltner, M.E.; Bishop, E.J., & Perez, C.M. (2004). Segmental and kinetic contributions in vertical jumps performed with and without an arm swing. Research Quarterly for Exercise and Sport, 75 (3), 216-230.
http://dx.doi.org/10.1080/02701367.2004.10609155

Feltner, M.E.; Fraschetti, D.J., & Crisp, R.J. (1999). Upper extremity augmentation of lower extremity kinetics during countermovement vertical jumps. Journal of Sports Sciences, 17, 449–466.
http://dx.doi.org/10.1080/026404199365768

Fukashiro, S.; Besier, T.F.; Barret, R.; Cochrane, J.; Nagano, A., & Lloid, D.G. (2005). Direction control in standing horizontal and vertical jumps. International Journal of Sport and Health Science, 3, 272-279.
http://dx.doi.org/10.5432/ijshs.3.272

García-Lopez, J., y Herrero-Alonso, J. A. (2005). Variables cinemáticas de la batida relacionadas con el rendimiento del salto horizontal a pies juntos. Biomecánica, 12 (2), 61-70.

Gutiérrez-Dávila, M.; Gutiérrez-Cruz, C.; Garrido, J.M., y Giles, J.F. (2012). Efecto de la restricción segmentaria en los test de salto vertical CMJ. Archivos de Medicina del Deporte, XXV, 147, 527-532.

Gutiérrez-Dávila, M. (1998) Biomecánica deportiva. Síntesis, Madrid.

Gutiérrez-Dávila, M.; Garrido, J.M.; Amaro, F.; Ramos, M. y Rojas, F.J. (2012). Método para determinar la contribución segmentaria en los saltos. su aplicación en el salto vertical con contramovimiento. Motricidad. European Journal of Human Movement, 29, 1-21

Gutiérrez-Dávila, M.; Garrido, J.M.; Gutiérrez-Cruz, C., y Giles, J. (2011). Análisis de la contribución segmentaria en los saltos verticales con contramovimiento y su efecto debido a la restricción propuesta en el test de Bosco CMJ. Motricidad. European Journal of Human Movement, 27, 59-74.

Gutiérrez, M., Soto, V.M. y Martínez, M. (1990) Sistema de análisis computerizado para el movimiento humano. Unisport. Junta de Andalucía.

Harman, E.A.; Rosenstein, M.T.; Frykman, P.N., & Rosenstein, R.M. (1990). The effects of arms and countermovement on vertical jumping. Medicine and Science in Sports and Exercise, 22, 825–833.
http://dx.doi.org/10.1249/00005768-199012000-00015

Jones, S.L., & Caldwell, G.E. (2003). Mono- and biarticular muscle activity during jumping in different directions. Journal of Applied Biomechanics, 19, 205-222.

Komi, P., & Bosco, C. (1978). Utilization of stored elastic energy in leg extensor muscles by men and women. Medicine Science in Sports, 10, 261-265.

Lees, A.; Vanrenterghem, J., & Clercq, D. (2004). Understanding how an arm swing enhances performance in the vertical jump. Journal of Biomechanics, 37, 1929-1940.
http://dx.doi.org/10.1016/j.jbiomech.2004.02.021

Leva de, P. (1996). Adjustments to Zatsiorsky-Seluyanovs segment inertia parameters. Journal of Biomechanics,. 29(9), 1223-1230.
http://dx.doi.org/10.1016/0021-9290(95)00178-6

Luhtanen, P., & Komi, R.V. (1978). Segmental contribution to forces in vertical jump. European Journal of Applied Physiology, 38, 181-188.
http://dx.doi.org/10.1007/BF00430076

Markovic, G.; Diznar, D.; Jukic, I., & Cardinale, M. (2004). Reliability and factorial validity of squat and countermovement jump tests. Journal of Strength and Conditioning Research, 18(3), 551-555.

Maulder, P., & Cronin, J. (2005). Horizontal and vertical jump assessment: reliability, symmetry, discriminative and predictive ability. Physical Therapy in sport. 6 (2), 74-82.
http://dx.doi.org/10.1016/j.ptsp.2005.01.001

Nagano, A.; Komura, T., & Fukashiro, S. (2007). Optimal coordination of maximal-effort horizontal an vertical jum motions a computer simulation study. Biomedical Engineering OnLine, 6(20), 1-9.

Nagano, A., & Gerritsen, K.G.M. (2001). Effects of neuromuscular training on vertical jumping performance a computer simulation study. Journal of Applied Biomechanics, 17, 27-42.

Ridderikhoff, A.; Batelaan, J.H., & Bobbert, M.F. (1999). Jumping for distance: control of the external force in squat jumps. Medicine Science Sports Exercise, 31, 1196-1204.
http://dx.doi.org/10.1097/00005768-199908000-00018

Tidow, G. (1990) Aspects of strength training in athletics. New Studies in Athletics, 1, 93–110.

Tomioka, M.; Owings, T.M., & Grabinener, M.D. (2001) Lower extremity strength and coordination are independent contributors to maximum vertical jump height. Journal Applied Biomechanics; 17, 181-187.

Tricoli, V.; Lamas, L.; Carnevale, R., & Ugrinowitsch, C. (2005) Short-term effects on lower-body functional power development: Weightlifting vs. vertical jump training programs. Journal Strength Condition Research, 19, 433-437.

Winter, D.A. (1990). Biomechanics and Motor Control of Human Movement. (2ª ed.) New York: Wiley Interscience., pp. 36-41.

Wood, G.A., & Jennings, L.S. (1979). On the use of spline functions for data smoothing. Journal of Biomechanics, 12, 477-479.
http://dx.doi.org/10.1016/0021-9290(79)90033-2

Zatsiorsky, V.M., & Seluyanov, N.V. (1983). The mass and inertial characteristics of the main segments of the human body. In: Biomechanics VIII-B. Matsui, H. and K. Kobayashi (Eds) Champaign, I.L: Human Kinetics, 1152-1159.


Palabras clave/key words


biomecánica; fotogrametría 2D; dinamometría; salto vertical y horizontal; biomechanics; 2D photogrammetric; kinetics; vertical and horizontal jumps.

Texto completo/Full Text:

PDF




------------------------ 0 -------------------------

RICYDE. Revista Internacional de Ciencias del Deporte
logopublisher_168


Publisher: Ramón Cantó Alcaraz
ISSN:1885-3137 - Periodicidad Trimestral / Quarterly
Creative Commons License